
1

PYTHON Dokumentacija

Python Documentation

Printing

We can print elements to the screen by using the print command. If we want to print text, we need to
surround the text with quotation marks " ".

print "Hello world"

print 2 + 2

print 10

String Formatting

print "My name is %s and I am %d years old!" % ('Zara', 21)

Variables

We use variables to store values that can be used to control commands in our code. We can also alter
these values throughout the code.

Make a variable to store text

name = "Zach"

Create variables that are numbers

num_one = 3

num_two = 4

sum = num_one + num_two

We can also assign multiple variables at once

num_one, num_two = 3, 4

The value of a variable can be changed after it has been created

num_one = num_one + 1

Variables have an associated ‘type’ based on their characteristics. A string (str) is a text element, an
integer (int) is a whole number element, a float (float) is a number with decimal places, and a Boolean
(bool) is an element that returns either True or False. We use the type command to determine the type of
an element.

The output will be str, or string

print type(name)

2

The output will be int, or integer

print type(sum)

The output will be bool, or boolean

print type(3==3)

We can change the type of an element by using the shortened name of the type

We do this when concatenating strings, such as:

age = 16

print "My age is " + str(age)

User Input

We can use input from the user to control our code.

Ask the user for input and save it to a variable to be used in code

This will only work if the input is being used as a string

name = input("What is your name? ")

If input needs to be used as a number, include the term 'int'

num_one = int(input("Enter a number: "))

num_two = int(input("Enter a second number: "))

This input can then be used to control different parts of the code

print "Hello, " + name

sum = num_one + num_two

Comments

We use comments to leave notes about the code to the reader. Comments are not actually run by
Python, they are just there to help us read the code.

We can make multiline comments with """ and single line comments with #.

"""

A multi-line comment describes your code

to someone who is reading it.

"""

Example:

3

"""

This program will ask the user for two numbers.

Then it will add the numbers and print the final value.

"""

number_one = int(input("Enter a number: "))

number_two = int(input("Enter a second number: "))

print "Sum: " + str(number_one + number_two)

Use single line comments to clarify parts of code.

Example:

This program adds 1 and 2

added = 1 + 2

print added

Break and Continue

We can use the break command to end our code. The continue command will leave the control structure
at that point and move to the commands found afterward.

This code will end when the use enters a negative

number = int(input("Enter a number: "))

if number < 0:

 break

else:

 print str(number)

This code will only print the numbers 0 to 3 and 6

for i in range(5):

 if i < 4:

 print i

 else:

 continue

print "6"

Exceptions

Exception handling allows us to prevent our programs from crashing in the event of a fault.

4

Try/Except with input

try:

 my_number = int(input("Enter an integer: "))

 print "Your number: " + str(my_number)

except ValueError:

 print "That wasn't an integer!"

Try/Except for Type Errors

try:

 my_number = '2' + 2

except TypeError:

 print "A type error has occurred!"

Try/Except for Key Errors

dictionary = {'1':'k', '3':'A', '4':'R', '5':'E', '6':'L'}

try:

 dictionary['2']

except KeyError:

 print "Key error"

Try/Except for Attribute Errors

try:

 dictionary.no_method()

except AttributeError:

 print "Attribute Error!"

You can also have

try:

 my_number = int(input("Enter an integer: "))

 print "Your number: " + str(my_number)

except:

 print "There was an error."

Random Numbers

To be able to use the randint or choice functions, you must use import random at the beginning of your
code.

Random integer between (and including) low and high

import random

5

random_num = random.randint(low, high)

random_element = random.choice(string)

Example:

Returns random number within and including 0 and 10.

random_num = random.randint(0,10)

Random element in a string

random_element = random.choice('abcdefghij')

If/Else Statements

We can tell the computer how to make decisions using if/else statements. Make sure that all the code
inside your if/else statement is indented one level!

If Statements

Use an if statement to instruct the computer to do something only when a condition is true. If the
condition is false, the command indented underneath will be skipped.

if BOOLEAN_EXPRESSION:

 print "This executes if BOOLEAN_EXPRESSION evaluates to True"

Example:

The text will only print if the user enters a negative number

number = int(input("Enter a number: "))

if number < 0:

 print str(number) + " is negative!"

If/Else Statements

Use an if/else statement to force the computer to make a decision between multiple conditions. If the first
condition is false, the computer will skip to the next condition until it finds one that is true. If no conditions
are true, the commands inside the else block will be performed.

if condition_1:

 print "This executes if condition_1 evaluates to True"

elif condition_2:

 print "This executes if condition_2 evaluates to True"

6

else:

 print "This executes if no prior conditions evaluate to True"

Example:

This program will print that the color is secondary

color == "purple"

if color == "red" or color == "blue" or color == "yellow":

 print "Primary color."

elif color == "green" or color == "orange" or color == "purple":

 Print "Secondary color."

else:

 print "Not a primary or secondary color."

Operators

We use mathematical, comparison, and logical operators in our codes to compare and alter values and
make decisions.

Mathematical Operators

Use mathematical operators to alter values.

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulus (Remainder)

() Parentheses (For order of operations)

Examples

z = x + y

w = x * y

Division

a = 5.0 / 2 # Returns 2.5

b = 5.0 // 2 # Returns 2.0

c = 5/2 # Returns 2

7

Increment (add one)

x += 1

Decrement (subtract one)

x -= 1

Absolute value

absolute_value = abs(x)

abs_val = abs(-5) # Returns 5

Square root

import math

square_root = math.sqrt(x)

Raising to a power

power = math.pow(x, y) # Calculates x^y

Rounding

rounded_num = round(2.675, 2) # Returns 2.68

Comparison Operators

Use comparison operators to compare elements in order to make decisions in your code. Comparison
operators return booleans (True/False).

x == y # is x equal to y

x != y # is x not equal to y

x > y # is x greater than y

x >= y # is x greater than or equal to y

x < y # is x less than y

x <= y # is x less than or equal to y

Comparison operators in if statements

if x == y:

 print "x and y are equal"

if x > 5:

8

 print "x is greater than 5."

Logical Operators

Use logical operators to check multiple conditions at once or one condition out of multiple.

And Operator

and_expression = x and y

Or Operator

or_expression = x or y

You can combine many booleans!

boolean_expression = x and (y or z)

Loops

Loops help us repeat commands which makes our code much shorter. Make sure everything inside the
loop is indented one level!

For Loops

Use for loops when you want to repeat something a fixed number of times.

This for loop will print "hello" 5 times

for i in range(5):

 print "hello"

This for loop will print out even numbers 1 through 10

for number in range(2, 11, 2):

 print "hello"

This code executes on each item in my_list

This loop will print 1, then 5, then 10, then 15

my_list = [1, 5, 10, 15]

for item in my_list:

 print item

While Loops

9

Use while loops when you want to repeat something an unknown number of times or until a condition
becomes false. If there is no point where the condition becomes false, you will create an infinite loop
which should always be avoided!

This program will run as long as the variable 'number' is greater than 0

Countdown from from 10 to 0

number = 10

while number >= 0:

 print number

 number -= 1

You can also use user input to control a while loop

This code will continue running while the user answers ‘Yes’

continue = input("Continue code?: ")

while continue == "Yes":

 continue = input("Continue code?: ")

Functions

Writing a function is like teaching the computer a new word.

Naming Functions: You can name your functions whatever you want, but you can't have spaces in the
function name. Instead of spaces, use underscores (_) like_this_for_example

Make sure that all the code inside your function is indented one level!

Defining a Function

We define a function to teach the computer the instructions for a new word. We need to use the term def
to tell the computer we’re creating a function.

def name_of_your_function():

 # Code that will run when you make a call to

 # this function.

Example:

Teach the computer to add two numbers

num_one = 1

num_two = 2

10

def add_numbers():

 sum = num_one + num_two

Returning Values in Functions

We can use the command return to have a function give a value back to the code that called it. Without
the return command, we could not use any altered values that were determined by the function.

We add a return statement in order to use the value of the sum variable

num_one = 1

num_two = 2

def add_numbers():

 sum = num_one + num_two

 return sum

Calling a Function

We call a function to tell the computer to actually carry out the new command.

Call the add_numbers() function once

The computer will return a value of 3

add_numbers()

Call the add_numbers() function 3 times and print the output

The output will be the number 3 printed on 3 separate lines

print add_numbers()

print add_numbers()

print add_numbers()

Using Parameters in Functions

We can use parameters to alter certain commands in our function. We have to include arguments for the
parameters in our function call.

In this program, parameters are used to give two numbers

def add_numbers(num_one, num_two):

 sum = num_one + num_two

 return sum

We call the function with values inside the parentheses

This program will print ‘7’

print add_numbers(3, 4)

If we have a list with the same number of parameters, we

can use the items to assign arguments using an asterisk

11

my_list = [3, 4]

print add_numbers(*my_list)

Strings

Strings are pieces of text. We can gain much information about strings and alter them in many ways
using various methods.

Indexing a String

We use indexing to find or take certain portions of a string. Index values always start at 0 for the first
character and increase by 1 as we move to the right. From the end of the string, the final value also has
an index of -1 with the values decreasing by 1 as we move to the left.

Prints a character at a specific index

my_string = "hello!"

print my_string[0] # prints "h"

print my_string[5] # prints "!"

Prints all the characters after the specific index

my_string = "hello world!"

print my_string[1:] # prints "ello world!"

print my_string[6:] # prints "world!"

Prints all the characters before the specific index

my_string = "hello world!"

print my_string[:6] # prints "hello"

print my_string[:1] # prints "h"

Prints all the characters between the specific indices

my_string = "hello world!"

print my_string[1:6] # prints "ello"

print my_string[4:7] # prints "o w"

Iterates through every character in the string

Will print one letter of the string on each line in order

my_string = "Turtle"

for c in my_string:

12

 print c

Completes commands if the string is found inside the given string

my_string = "hello world!"

if "world" in my_string:

 print "world"

Concatenation

my_string = "Tracy the"

print my_string + " turtle" # prints “Tracy the turtle”

Splits the string into a list of letters

my_string = "Tracy"

my_list = list(my_string) # my_list = ['T’, ‘r’, ‘a’, ‘c’, ‘y’]

Using enumerate will print the index number followed by a colon and the

word at that index for each word in the list

my_string = "Tracy is a turtle"

for index, word in enumerate(my_string.split()):

 print str(index) + ": " + word

String Methods

There are many methods that can be used to alter strings.

upper: To make a string all uppercase

my_string = "Hello"

my_string = my_string.upper() # returns "HELLO"

lower: To make a string all lowercase

my_string = "Hello"

my_string = my_string.lower() # returns "hello"

isupper: Returns True if a string is all uppercase letters and False otherwise

my_string = "HELLO"

print my_string.isupper() # returns True

islower: Returns True if a string is all lowercase letters and False otherwise

my_string = "Hello"

print my_string.islower() # returns False

13

swapcase: Returns a string where each letter is the opposite case from original

my_string = "PyThOn"

my_string = my_string.swapcase() # returns "pYtHoN"

strip: Returns a copy of the string without any whitespace at beginning or end

my_string = " hi there "

my_string = my_string.strip() # returns "hi there"

find: Returns the lowest index in the string where substring is found

Returns -1 if substring is not found

my_string = "eggplant"

index = my_string.find("plant") # returns 3

index = my_string.find("Tracy") # returns -1

split: Splits the string into a list of words at whitespace

my_string = "Tracy is a turtle"

my_list = my_string.split() # Returns ['Tracy', 'is', 'a', 'turtle']

Tuples

Tuples are immutable sequences of items.

Creating a Tuple

We create a tuple by listing items inside parentheses. We can include elements of any type.

Make a new tuple named "my_tuple"

my_tuple = (1, 2, 3, 4, 5)

Tuple with elements of different types

my_tuple = (0, 1, "Tracy", (1, 2))

Tuple with single element

my_tuple = (3,)

Tuple of tuples

14

my_tuple((0, 1), (2, 3))

Altering a Tuple

Due to the immutable nature of tuples, we cannot alter individual elements in the tuple but can perform
various other tasks with them.

Get the length of the tuple

print len(my_tuple)

Accessing elements within nested tuples

print my_tuple[0][0]

print my_tuple[1][0]

Concatenating tuples

x = (1, 2)

y = (5, 6)

my_tuple = x + (3,) + y

Lists

Lists are mutable sequences of items.

Creating a List

We create a list by listing items inside square brackets. We can include elements of any type.

Create an empty list

my_list = []

Create a list with any number of items

my_list = [item1, item2, item3]

Example:

number_list = [1, 2, 4]

A list can have any type

my_list = [integer, string, boolean]

Example:

a_list = ["hello", 4, True]

15

Altering a List

Due to the mutable nature of lists, we can alter individual elements in the list.

Access an element in a list

a_list = [“hello”, 4, True]

first_element = a_list[0] # Returns "hello"

Set an element in a list

a_list = [“hello”, 4, True]

a_list[0] = 9 # Changes a_list to be [9, 4, True]

Looping over a list

Prints each item on a separate line (9, then 4, then True)

a_list = [9, 4, True]

for item in a_list:

 print item

Length of a list

a_list = [9, 4, True]

a_list_length = len(a_list) # Returns 3

Creates a list based on first operation

This will create a list with numbers 0 to 4

a_list = [x for x in range(5)]

This will create a list with multiples of 2 from 0 to 8

list_of_multiples = [2*x for x in range(5)]

List Methods

There are many methods that can be used to alter lists.

append: Add to a list

a_list = ["hello", 4, True]

a_list.append("Puppy") # Now a_list = ["hello", 4, True, "Puppy"]

pop: Remove and return last element from the list

a_list = ["hello", 4, True]

last_item = a_list.pop() # Removes True, now a_list = ["hello", 4]

Remove and return an item from a list at index i

a_list = ["hello", 4, True]

16

a_list.pop(0) # Removes "hello", now a_list = [4, True]

index: Returns the index value of the first item in the list that matches element

There is an error if there is no such item

a_list = ["hello", 4, True]

a_list.index(4) # Returns 1 because 4 is found at index[1]

a_list.index("hi") # Error because no item "hi"

sort: Returns a sorted list

my_list = [9, 7, 1, 2, 3]

my_list.sort() # Returns [1, 2, 3, 7, 9]

reverse: Returns a reversed list

my_list = [1, 2, 3, 4]

my_list.reverse() # Returns [4, 3, 2, 1]

count: Returns the number of instances of a particular item that were found

my_list = [1, 4, 2, -4, 10, 0, 4, 2, 1, 4]

print my_list.count(4) # Returns 3

print my_list.count(123) # Returns 0 because 123 does not exist in list

extend: Allows us to add a list to a list

my_list = [1, 2, 3]

my_list.extend([4, 5, 6]) # Returns [1, 2, 3, 4, 5, 6]

remove: Allows us to remove a particular item from a list

Only removes the first instance of the item

my_list = ["apple", "banana", "orange", "grapefruit"]

my_list.remove("orange") # Returns ["apple", "banana", "grapefruit"]

join: Creates string out of list with specified string placed between each item

my_list = ["Tracy", "is", "a", "turtle"]

(" ").join(my_list) # Returns the list as a string with spaces between words

2D Lists

2D Lists allow us to create lists of lists.

Create an empty list

17

my_list = []

Add to the list

my_list.append([1, 2, 3])

my_list.append([4, 5, 6])

Access elements within the nested lists

print my_list[0] # Returns [1, 2, 3]

print my_list[0][1] # Returns 2

Take a slice of the outer list

print my_list[0:2] # Returns [[1, 2, 3], [4, 5, 6]]

Take a slice of the inner list

print my_list[0][0:2] # Returns [1, 2]

Dictionaries

Dictionaries have a collections of key-value pairs.

a_dictionary = {key1:value1, key2:value2}

Example:

my_farm = {pigs:2, cows:4} # This dictionary keeps a farm's animal count

Creates an empty dictionary

a_dictionary = {}

Inserts a key-value pair

a_dictionary[key] = value

my_farm["horses"] = 1 # The farm now has one horse

Gets a value for a key

my_dict[key] # Will return the key

my_farm["pigs"] # Will return 2, the value of "pigs"

Using the 'in' keyword

my_dict = {"a": 1, "b": 2}

18

print "a" in my_dict # Returns True

print "z" in my_dict # Returns False

print 2 in my_dict # Returns False, because 2 is not a key

Iterating through a dictionary

for key in my_dict:

 print "key: " + str(key)

 print "value: " + str(my_dict[key])

Classes

Classes hold multiple functions.

Declare a class

class MyClass:

 # The __init__ method is called whenever we instantiate our class

 def __init__(self):

 print "Class initiated"

 self.my_num = 0

Instantiate your class

my_class = MyClass()

Access instance variables in your class

print my_class.my_num

my_class.my_num = 10

Adding arguments to your class

class Point:

 def __init__(self, x = 0, y = 0):

 self.x = x

 self.y = y

Instantiate the class

p = Point(3, 4)

19

Sets

A set contains an unordered collection of unique and immutable objects.

Make a new set named "new_set"

new_set = set([])

girl_scout_badges = set([])

Add to a set

new_set.add(item)

girl_scout_badges.add("Squirrel Whisperer")

Does a set contain a value

item in my_set # Returns a boolean

"Squirrel Whisperer" in girl_scout_badges # Returns True

Number of elements in the set

len(my_set)

len(girl_scout_badges) # Returns 1 since there is only one item in the set

File Input

Use the following when importing files.

Extracting Data from a File:

Example File:

test.txt

Hello World

This is File Input

Opening the file, Create a File object and store it in a Variable:

20

file = open('test.txt')

Getting all text:

file.read() # Returns:

 # Hello World

 # This is File Input

Getting a Line of Text:

file.readline() # Returns:

 # Hello World

Getting lines in a file:

for line in file:

 print line + '!' # Returns:

 # Hello World\n!

 # This is File Input\n!

Note '\n', signifying the end of a line of text

for line in file:

 print line + '!' # Returns:

 # Hello World

 # !

 # This is File Input

 # !

To remove this extra newline, we can use:

for line in file:

 print line.strip() + '!' # Returns:

 # Hello World!

 # This is File input!

Closing a File

file.close()

21

